If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2+2=12
We move all terms to the left:
4m^2+2-(12)=0
We add all the numbers together, and all the variables
4m^2-10=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $
| 500+25w=200 | | 240.00+0.25x=392.50 | | 9x^2+88x-96=0 | | -6-2x=6x-10x+4 | | 2x-3+x-6=180 | | 11x-3x+16=11x+39 | | x=5,1/7+x=2/3x | | 503+z=748 | | 3+8m=51 | | 3p-7+9-p=p+2 | | 673+n=809 | | 3t-10=14 | | x-7=19-10x+7) | | 6x+7x-60=100-7x | | 8=3v-12 | | z-85/6=118/9 | | 12-24g=-21-13g | | -9(x+3=18 | | 24=-5x-16 | | -17t+19=-16t | | m2+4m+4=0 | | 2/3p=20 | | -2+6r=5r-10 | | 5(x+9)=77 | | x2+105=0 | | -3c+8=-8 | | -10k-10=-8k+10-7k | | -9h-7=9+7h | | 5+8=11p | | -5m=-6m+10 | | 1/5x•3=2/5(x-1)+5 | | 3x(5x8)=(3x5) |